
A virtual-machine-based middleware

Alcides Calsavara , Agnaldo K. Noda , Juarez da Costa , Carlos Kolb , Leonardo Nunes

�
Pontifı́cia Universidade Católica do Paraná

Programa de Pós-Graduação em Informática Aplicada
Rua Imaculada Conceição, 1155, Prado Velho,

80215-901 Curitiba, PR, Brazil

�
alcides,anoda,juarez,kolb,leonardo � @ppgia.pucpr.br

Abstract. Currently, a number of distributed software systems development
tools exist, but typically they are designed either to satisfy industrial standards
– industrial perspective – or to experiment new concepts – research perspec-
tive. There is a need for software development tools where programmers can
both learn about distributed computing – pedagogical perspective – and build
quality distributed software systems through prototyping – experimental per-
spective. This paper introduces the VIRTUOSI Project, which aims at build-
ing a toolkit to assist in developing and executing distributed software systems
from both pedagogical and experimental perspectives. It combines virtual ma-
chine, object-oriented programming and computational reflection concepts to
give those perspectives. The VIRTUOSI runtime environment can be seen as a
reflective composed of virtual machines, which provides mechanisms and gives
transparency to critical aspects of distributed systems, such as objects migra-
tion, remote method invocation and code placement.

Resumo. Atualmente, existem muitas ferramentas para o desenvolvimento de
sistemas de software distribuı́do, mas, tipicamente, são desenhadas para satis-
fazer padrões industriais – perspectiva industrial – ou então para experimen-
tar novos conceitos – perspectiva de pesquisa. Há necessidade de ferramen-
tas para o desenvolvimento de software através das quais programadores pos-
sam tanto aprender sobre computação distribuı́da – perspectiva pedagógica –
quanto construir sistemas de software distribuı́dos com qualidade através de
prototipação – perspectiva experimental. Este artigo apresenta o Projeto VIR-
TUOSI, o qual tem por objetivo a construção de ferramentas para apoio no
desenvolvimento e na execução de sistemas de software distribuı́do com as per-
spectivas pedagógica e experimental. O projeto combina conceitos de máquinas
virtuais, programação orientada a objetos e reflexão computacional a fim de dar
tais perspectivas. O ambiente de execução da VIRTUOSI pode ser visto como
um middleware formado por máquinas virtuais, no qual há mecanismos que
permitem e dão transparência ao principais aspectos de sistemas distribuı́dos,
tais como migração de objetos, invocação remota de métodos e alocação de
código executável.

1. Introduction

The importance of distributed computing has grown significantly in the last years due to
the incresing use of the Internet as a means of information systems deployment. Many
new applications have emerged and new ones are expected in the near future, especially in
the fields of embbeded systems and mobile devices – the so called ubiquitous computing.
This scenario promises a high demand for distributed software system development in the
next years.

However, distributed computing introduces great complexity in software systems
development, deployment and maintenance. A number of requirements which are not
normally present in centralized systems may need to be fulfilled in distributed systems,
such as reliability of an interprocess message exchange protocol. Also, requirements
which are already present in centralized systems may be more difficult to implement in
distributed systems, such as security. As a consequence, developing quality distributed
software systems is hard and relies fundamentally on programmers expertise and good
tool assistance.

A programmer becomes an expert in developing distributed software systems
firstly when she is properly taught distributed computing concepts and secondly when she
is properly trained to use specific technological artifacts, such as a distributed program-
ming language or a middleware for distributed execution. Often, concepts are learned
by experimenting with technological artifacts, where knowledge on theory and practice
come together. The learning process is complex and the learning curve depends on many
factors, but surely the technological artifacts employed are decisive.

A tool for developing distributed software systems can provide a series of features
to programmers, from conceptual modeling to physical system installation. Naturally, the
quality of a distributed software system is strongly influenced by the features provided
by such a tool and how programmers use them. One such feature that is decisive for
the success of a system is the capability to easyly create prototypes, that is, create a
preliminary version for the target system where its requirements – either established in
the first place or introduced later – can be quickly implemented, debugged, tested and
simulated.

Currently, a number of distributed software systems development tools exist, but
they hardly favor learning about distributed computing and hardly favor prototyping be-
cause they are typically designed either to satisfy industrial standards – industrial per-
spective – or to experiment new concepts – research perspective. Industrial tools are
concerned with productivity and software efficiency and robustness; they hardly permit
a programmer to develop any task with simplicity and focused on a single problem, i.e.,
industrial tools invariably forces programmers to care about requirements that operational
releases of real-world applications have and need to be considered despite the problem un-
der study. That surely distracts programmers and may compromise both developing and
learning curve. On the other hand, research tools normally have complex user interfaces
and require the knowledge of particular concepts. Programmers often find it difficult to
use research tools because they require a considerably large amount of work and time to
build even small applications.

Therefore, there is a need for software development tools where programmers can

both learn about distributed computing – pedagogical perspective – and build quality dis-
tributed software systems through prototyping – experimental perspective. A pedagogical
tool should implement the main established principles of distributed computing in a clean
way and should be open to be enhanced with trial concepts. An experimental tool should
conform with the main established technologies, so that it would be possible to convert a
prototype to a corresponding operational release.

The remaining of this paper is organized as follows. Section 2 presents the objec-
tives of a new toolkit for building distributed applications named VIRTUOSI. Section 3
describes the main design principles of VIRTUOSI. Section 4 discusses how distributed
objects are managed in VIRTUOSI, gives an overview on how they can migrate and how
remote method invocation is implemented. Finally, Section 6 presents some conclusions
and discusses future work.

2. Objectives

VIRTUOSI Project aims at building a toolkit to assist in developing and executing dis-
tributed software systems from both pedagogical and experimental perspectives. From
pedagogical perspective, VIRTUOSI will permit programmers to be taught about dis-
tributed computing in a structured manner; distributed programming concepts and tech-
niques would be introduced one by one and each studied separately from others. As a
consequence, programmers should get a better understanding of distributed computing
and the learning curve should get accelerated. From experimental perspective, VIRTUOSI

will permit programmers to create prototypes which are mature and robust; they will be
mature because all typical system requirements will be implementable, and they will be
robust because it should be easy to carry tests on separate units, followed by integrated
tests, where it would be possible to simulate all real-world operational configurations and
circumstances, independtly of particular technological aspects. Because of their maturity
and robustness, such prototypes will be the basis for easyly developing the corresponding
operational releases by using specific technologies. As a net effect, VIRTUOSI will assist
in developing distributed software systems of great quality in a short period of time, since
programmers will be better trained and will be able to implement and test critical system
requirements in a controlled manner.

3. Key Design Decisions

The VIRTUOSI toolkit encompasses many aspects of distributed computing and of soft-
ware engineering. It should comprise artifacts to build software systems and a full-fledged
distributed runtime system. The pedagogical perspective requires an environment where
a programmer can write a program by using a simple yet powerful set of abstractions, and
then test that program in a way that all abstractions employed can be easyly traced, i.e.,
translations from programming abstractions to runtime structures should be minimized.
Another requirement from the pedagogical perspective is that the environment should be
as neutral as possible with respect to the actual runtime platform in order to avoid unnec-
essary distractions. Finally, the pedagogical perspective requires an environment where
the programmer can easyly select which system aspects should be either transparent or
translucent in a given moment. The experimental perspective, on the other hand, requires

an environment where real-world applications can be quickly developed and carefully
tested. The subsequent sections present the key design decisions made for the VIRTU-
OSI toolkit in order to satisfy the requirements discussed so far, namely virtual machine,
object-oriented programming and computacional reflection.

3.1. Virtual Machine

The VIRTUOSI runtime environment is composed of a collection of communicating vir-
tual machines. In a simplified way, each virtual machine is a user-level process that
emulates a real-world computer, including its hardware components and corresponding
operating system. Thus, each virtual machine is able to host any typical software sys-
tems that store and process data and, as well, communicate with peripherals. Virtual
machines are grouped in collections where each virtual machine can be unambiguously
addressed and can exchange messages with any other in the collection. That allows a
software system running on a certain machine to communicate with a software system
running on a different machine, i.e., a collection of communicating virtual machines is
a runtime environment for distributed software systems. In fact, this runtime environ-
ment can be seen as a middleware, similarly to systems based on the CORBA Standard
[Soley and Kent, 1995], since a distributed software system can run on a heterogeneous
computer network.

Such an approach to distributed computing – based on virtual machines – is in
accordance with the objectives of VIRTUOSI Project (Section 2) due to the following
reasons:

neutral architecture A virtual machine is not tied to any particular computer architec-
ture; it implements only core computer features which are common to standard
computer technologies. From experimental perspective, this ensures that proto-
type software systems which run on VIRTUOSI machines can be easyly translated
into operational releases that run on any typical real-world machines, while not
precluding code optimization for better use of particular computer architeture fea-
tures. On the other hand, from pedagogical perspective, the simplicity of a VIRTU-
OSI machine architecture makes it appropriate for training computer programmers
since the number of concepts to work with is small; consequently, programmers
are forced to know how to combine such concepts to build complex applications.

portability and mobility A virtual machine sits between applications and the actual op-
erating system; applications interact with the virtual machine which, in turn, in-
teracts with the operating system. As a consequence, there must be a specific
implementation of the VIRTUOSI machine for each operating system. Another
consequence is that a software system that runs on a specific VIRTUOSI machine
implementation will run on any other. In other words, VIRTUOSI applications are
portable: they run on heterogeneous computers, as long as there is proper imple-
mentation of the virtual machine. From experimental perspective, this portability
helps building prototypes when a group of programmers who use distinct oper-
ating systems work cooperatively; they can share code without getting down to
runtime environment specifics, thus improving productivity. From pedagogical
perspective, it helps programmers to write exercises in steps where several distinct
computers can be employed without causing any distractions. Yet another conse-
quence of the use of virtual machines is that VIRTUOSI applications are mobile:

they can move through heterogeneous computers, at runtime, as long as proper
implementations of the VIRTUOSI machine are provided. This mobility can be
very useful since it is a requirement that often appears in modern applications,
especially in ubiquitous computing.

controlled execution Because a virtual machine is a software system that controls the
execution of other software systems, it can fully assist in debugging applications;
a virtual machine can keep very precise data about execution context, thus pro-
viding programmers with more accurate information when some bug happens.
From experimental perspective, this is an essential feature to improve productiv-
ity. From pedagogical perspective, it is also important because programmers can
use debugging to understand better software systems behaviour.

flexible network configuration Since a VIRTUOSI machine is a user-level process, there
may exist any number of instances of the virtual machine running on a single com-
puter. As a consequence, a collection of � virtual machines may run atop a net-
work containing from � to � computers. In the extreme, there is no need to have
a real computer newtork to run a VIRTUOSI distributed application. According to
[Silberchatz and Galvin, 1998], this concept was first experimented by the IBM
VM Operating System, where a set of virtual machines run on a single physical
computer, giving the illusion that each user has its own computer; communication
between the virtual machines happens through a virtual network. From experi-
mental perspective, such feature may easy the development of prototypes, since
any network configuration can be simulated. From pedagogical perspective, it
may help programmers to experiment with distributed computing even when only
a single machine is available.

3.2. Object-Oriented Programming

Probably, object-oriented programming is the most widely accepted paradigm for dis-
tributed computing, both in academy and industry. Object orientation was first in-
troduced by Simula-67 [Dahl and Nygaard, 1970] as means to represent real-world
entities for the purpose of simulation only, and got popularity after Smalltak-80
[Goldberg and Robson, 1983] and C++ [Stroustrup, 1986]. Currently, there is a number
of programming languages that support object-oriented programming concepts and they
are largely employed in computer programmer training for more than a decade. More
recently, with the incresing demand for Internet-based applications, new languages and
tools have appeared and, practically, all of them are object oriented. Perhaps, the most
significant example is Java [Arnold and Gosling, 1996], which, despite its industrial fla-
vor, is very much used in introductory programming courses and also motivates much
of the current research in distributed computing. Another important example is Eiffel
[Meyer, 1997], a languague that rigorously implements object-oriented concepts.

In fact, the object-oriented paradigm is present in almost every new architectural
development in the distributed system community. For instance, both the Open Dis-
tributed Processing (ODP) and the Object Management Group (OMG), the main standard-
ization initiatives for heterogeneous distributed computing, are based on object concepts.
In the software industry, two important examples of the use of object-oriented concepts
are the Sun Microsystems’ Java-based J2EE and the Microsoft .NET plaftorm.

VIRTUOSI project adopts object orientation as the paradigm for both applica-

tions development and runtime system. Programmers should develop applications by
employing solely object-oriented concepts, assisted by proper artifacts, such as a rigor-
ously object-oriented programming language, and tools, such as a compiler built accord-
ing to the pedadogical perspective, i.e., a compiler that helps in training rather than simply
checking the source code. The runtime system – defined by a collection of virtual ma-
chines (Section 3.1) – should preserve all object-oriented abstractions in order to minimize
translations that could make difficult debugging applications; that helps in fast building
prototypes – the experimental perspective – and helps programmers to understand better
programming concepts – the pedagogical perspective.

3.3. Computational Reflection

Three different yet complementary approaches to the use of the object paradigm in con-
current and distributed contexts are discussed in [Briot et al., 1998]:

library approach Object-oriented concepts, such as encapsulation, genericity, class and
inheritance, are applied to structure concurrent and distributed software systems
through class libraries. It is oriented towards system builders and aims at identify-
ing basic concurrent and distributed abstractions – it can be viewd as a bottom-up
approach where flexibility is priority. Its main limitation is that programming
is represented by unrelated sets of concepts and objects, thus requiring great
programmers expertise. Examples of the library approach are the ISIS System
[Birman, 1985] and the Arjuna System [Parrington et al., 1995].

integrative approach Object-oriented concepts are unified with concurrent and dis-
tributed system concepts, such as object with activity. It is oriented towards ap-
plication builders and aims at defining a high-level programming languague with
few unified concepts – it makes mechanisms more transparent. Its disadvantage is
the cost of possibly reducing the flexibility and efficiency of the mechanisms. Ex-
amples of the integrative approach are the distributed operating systems Amoeba
[Mullender et al., 1990] and Mach [Boykin et al., 1993].

reflective approach Integrates protocol libraries within an object-based programming
language; the application program is separated from various aspects of its im-
plementation and computation contexts – separation of concerns – by describing
them in terms of metaprograms, according to the concept of computational reflec-
tion, firstly disseminated by [Maes, 1987]. It is oriented towards both application
builders and system builders and, in fact, bridges the two previous approaches by
providing a framework for integrating protocol libraries within a programming
language or system – combination of flexibility and transparency.

VIRTUOSI Project adopts the reflective approach, thus allowing programmers
change systems behaviour in two levels: application level and runtime system level. Such
approach conforms to the established project objectives (Section 2) because, from ped-
agogical perspective, programmers can selectively choose what system features should
be or not transparent, so that it is possible to study each feature individually or com-
bine just some of them. And, from experimental perspective, programmers have a great
dynamism for developing software systems as components can be easyly replaced and
tested. In fact, the VIRTUOSI runtime environment can be seen as a reflective middleware,
like the CORBA-based implementations DynamicTAO [Kon et al., 2000] and Open ORB

[Blair et al., 2001]. The reflective middleware model is a principled and efficient way
of dealing with highly dynamic environments yet supports development of flexible and
adaptative systems and applications [Kon et al., 2002]. Naturally, such flexibility may
be difficult to achieve and should require a consistent model for composing meta-level
system resources, such as the framework proposed in [Venkatasubramanian, 2002].

In VIRTUOSI, the combination of virtual machine and object orientation brings
a particularly interesting feature for the implementation of computational reflection: ob-
jects and their corresponding code can be explicitly stored and manipulated at runtime,
thus permiting reflection on practically any computation aspect, easying dynamic mod-
ification of systems behaviour. The architecture of a VIRTUOSI machine is, therefore,
oriented towards computational reflection, besides all aspects related to the pedagogical
and experimental perspectives, discussed so far. In other words, a VIRTUOSI machine
should have access to all the semantics of an application for providing good support to
programmers for both pedagogical and experimental purposes and for permiting full re-
flection. This feature differs VIRTUOSI from other attempts such as the Guaraná Project
[Oliva, 1998], where the Java Virtual Machine was modified to support computational
reflection, but entirely preserving its standard code format – the so called bytecode –
and programming language compatibility. It differs, as well, from the PJama Project
[Atkinson, 1998], where the Java Virtual Machine is modified in order to support orthog-
onal persistence.

The solution found in VIRTUOSI for the purpose of having full application se-
mantics at runtime is to represent and store program code in the form of a program
tree: a graph of objects that represents all elements of a given source code, including
their relationships. Program trees are successfully employed in the Juice Virtual Machine
[Kistler and Franz, 1997, Franz and Kistler, 1997] for transfering code through the net-
work; when a program tree reaches its destination is then translated to a specific machine
code for execution. Since there is a direct mapping between a program tree and a source
code, the rules for building a program tree are the same for writing an object-oriented pro-
gram. Such rules are established by an object model formalized by means of a metamodel
which are expressed in the Unified Modeling Language (UML) [Rumbaugh et al., 1997];
the objects of a program tree are instances of the classes present in the metamodel.

4. Distributed Objects

Objects reside within virtual machines and can reference each other locally and remotely.
When an object has a reference to another, it can invoke methods; the invocation is local
when the reference is local, otherwise it is remote. An object A obtains a reference to an
object B by one of the following means:

� Object A creates object B.
� Object A receives a method invocation where an object B is passed as a parameter.
� Object A invokes a methods of some object and receives object B as return.

Because in VIRTUOSI objects are always created locally, an object can only obtain
a reference to a remote object either when it is passed as parameter or when it is returned.
A third case may happen when an object migrates: a local reference may become a remote
reference.

As discussed, the management of objects in VIRTUOSI can be very complex, thus
requiring a proper implementation. The subsequent sections describes the handle table
mechanism adopted and how migration and remote method invocation use it.

4.1. Handle Table

All objects are referenced through a structure called handle table, similarly to they way
it is implemented in DOSA (Distributed Object System Architecture) [Hu et al., 2003].
Figure 1 illustrates how objects are referenced both within a virtual machine and between
virtual machines. The VM named Alpha stores objects identified as 12 and 17, while
the VM named Beta stores objects identified as 45 and 67. A handle table is an array
of entries of two types: entry for local object and entry for remote object. Thus, for
each object there is an entry in the handle table of the machine where the object resides.
For instance, the object 12 is referenced by entry 0 of Alpha. An object cannot directly
reference another; an object can only reference a handle table entry in the same machine.
For example, object 12 references entry 1 of Alpha, which, in turn, references object 17;
conceptually, object 12 references object 17. An object may also conceptually reference
an object that resides remotely. For example, object 17 – that resides in Alpha – references
object 45 – that resides in Beta. This is implemented through the entry 2 of Alpha, which
references entry 0 of Beta. Therefore, an entry for local object must contain an object
reference, while an entry for remote object must contains a virtual machine name and a
handle table entry index.

17 67

1

45

0 2

VM Beta

Object

Reference to local object

Entry for local object

Entry for remote object

Reference to local entry

Reference to remote entry

12

0 1 2

VM Alpha Key:

Figure 1: Example of handle table

4.2. Object Migration

Object can migrate from one virtual machine to another. Typically, object migrate for
efficiency (load balance) and accessibility purposes. From pedagogical perspective, it
may be interesting to migrate objects to observe differences between local and remote
communication. From experimental perspective, it may be interesting to migrate objects
to simulate applications where mobile devices carry some software.

In VIRTUOSI, object migration can be programmed by using a set of operations
defined according to [Jul et al., 1988], as follows.

move Moves a local object to another machine.
fix Fix an object on the machine where it resides, so it cannot migrate anymore.

unfix Undoes a previous fix operation, so that the object can migrate again.
refix Atomically, moves an object to another machine and fixes it there.
locate Returns the name of the virtual machine where a given object resides.

When an object migrates, the handle table of the incoming machine and the handle
table of the destination machine must be updated. In the destination machine, a new entry
must be inserted: an entry for local object. In the incoming table, the existing entry
for local object must be replaced for a entry for remote object that references the newly
created entry in the destination machine.

The migration mechanism brings some constraints to object behaviour:

� An object cannot migrate while it performs any activity.
� An object cannot initiate a new activity while migrating.

Composed objects must migrate all together. As a consequence, the move opera-
tion has no effect for an object that belongs to another. Also, an object cannot migrate if
it contains any object that is fixed.

4.3. Remote Method Invocation

The remote method invocation mechanism is totally transparent in VIRTUOSI. Like any
Remote Procedure Call (RPC) mechanism [Birrel and Nelson, 1984], there must be pa-
rameter marshalling, message exchange and some level of fault tolerance. The handle
table helps identifying whether a method invocation is either local or remote, thus pro-
viding access transparency [Tanenbaum, Andrew S., 1995]: a programmer does not need
to concern about distinguishing local and remote calls. Also, the handle table helps find-
ing an object when it happens to be remote, thus providing location transparency. The
marshalling process is automatically done by using the information provided by program
trees, which are available at runtime. In other words, there is no need to prepare stub
code in advance. Some typical faults that may happen include remote machine discon-
nects from the network, message loss and target object is under migration. All these faults
require proper treatment.

5. Architecture Overview

The previous Section described how distributed objects are managed by employing handle
tables. This very same concept is exploited as well to manage distributed code in the VIR-
TUOSI middleware. This Section presents an overview of the architecture of VIRTUOSI,
where practically all elements can be distributed, including objects, code and activities.

The code interpreted by a VIRTUOSI machine has a very special format: it is graph
of objects which represent the original source code, in such a way that all the semantics is
preserved and made available at runtime. Such objects are instances of classes defined in
the VIRTUOSI metamodel. (It is out of the scope of this paper to describe the metamodel.)
For each user class, our compiler creates a graph of objects, which we simply call an ADT
(Abstract Data Type). Thus, there will be an object that represents the whole ADT, and
there will be an object that represents a method that belongs to the ADT, and there will be
an object that represents a formal parameter of a method, and there will be an object that
represents a method call, and so on. Such complex representation, when compared to Java

bytecode, is justified in our project because we intend to give full support to computational
reflection.

Another important characteristic of VIRTUOSI is that methods can be invoked in
two different modes: synchronous or asyncronous. However, such mode is not fixed per
method, as it occurs in traditional systems. In VIRTUOSI, the caller must choose the
mode it desires. Thus, a certain method can be called synchronously at one moment (by
one client), while asynchronously later (by another client, perhaps).

Figure 2 shows two VIRTUOSI machines and their main elements. Each machine
contains a the following spaces:

ADT Space A collection of ADT’s (one for each user class). Each ADT has a corre-
sponding entry within the local ADT Table. Thus, if an ADT needs to reference
another, it does it through the ADT Table. For example, a certain ADT, say A, may
define an attribute whose type is a second ADT, say B. As the Figure shows, it does
not matter whether A and B are located in the same machine because de ADT Ta-
ble makes referencing remote ADT’s transparent. There is also a Method Table:
each method (defined within a certain ADT) must have an entry in that table. The
consequence of this is that every time there is a method call, the object that repre-
sents such a call references an entry of Method Table, instead of referencing the
(object that represents the) method directly. Again, this gives transparency to code
distribution because it does not matter whether a method call has its target a local
method or a remote method (with respect to code, which is independent of object
placement).

Object Space A collection of objects which are instances of ADT’s available on the local
ADT Space. That implies that an object may exist within a certain machine only
if its corresponding ADT is also there. Obviously, it may happen that the same
ADT gets replicated amongst machines if its instances are distributed. Another
consequence is that when an object migrates to a certain machine, the migration
mechanism must check if the corresponding ADT is already there or not. If not,
the ADT itself must migrate or copied to the target machine, thus requiring update
on ADT and Method Tables. References between objects – either local or remote
– are managed by the Object Table, which was described in the previous Section.

Activity Space An activity is the execution of a method. VIRTUOSI runtime system em-
ployes the traditional stack-based execution algorithm. There are two important
detais, however. Firstly, activities can be either synchronous or asynchronous,
thus requiring some special care. Secondly, VIRTUOSI aims at giving total trans-
parency to remote method invocation, so an activity on one machine can start a
new activity (actually, a new stack of activities) on a remote machine. Again,
the runtime system must take care of the dependencies between such activities,
including the necessary message exchange and fault tolerance.

6. Conclusions and Future Work

We have introduced a new toolkit named VIRTUOSI for building distributed object sys-
tems with pedagogical and experimental perspectives. It combines virtual machine,
object-oriented programming and computational reflection concepts to give those per-
spectives. A previous work [Calsavara and Nunes, 2001] has shown that the main design

principles of VIRTUOSI are feasible. Currently, a full-fledged version of the toolkit is
under development.

References

Arnold, K. and Gosling, J. (1996). The Java Programming Language. Addison Wesley.

Atkinson, M. (1998). Providing orthogonal persistence for java. Lecture Notes in Computer Science,
(1445):383–395. ECOOP’98.

Birman, K. P. (1985). Replication and fault-tolerance in the ISIS System. ACM Operating System Review,
19(5). Proceedings of the 10th ACM Symposium on Operating System Principles.

Birrel, A. D. and Nelson, B. J. (1984). Implementing remote procedure calls. ACM Transactions and
Computer Systems, 2(1):39–59.

Blair, G., Coulson, G., Andersen, A., Blair, L., Clarke, M., Costa, F., Duran-Limon, H., Fitspatrick, T.,
Johnston, L., Moreira, R., Parlavantzas, N., and Saikoski, K. (2001). The design and implementation of
Open ORB. In IEEE Distributed Systems Online.

Boykin, J., Kirschen, D., Langerman, A., and Loverso, S. (1993). Programming under Mach. Addison-
Wesley, Reading, MA.

Briot, J.-P., Guerraoui, R., and Lohr, K.-P. (1998). Concurrency and distribution in object-oriented pro-
gramming. ACM Computing Surveys, 30(3):291–329.

Calsavara, A. and Nunes, L. (2001). Estudos sobre a concepção de uma linguagem de programação reflexiva
e correspondente ambiente de execução. In V Simpósio Brasileiro de Linguagens de Programação, pages
193–204. In Portuguese.

Dahl, O.-J. and Nygaard, K. (1970). Simula-67 common base language. Technical Report S-22, Norwegian
Computing Centre, Oslo.

Franz, M. and Kistler, T. (1997). Does java have alternatives? In Proceedings of the California Software
Symposium CSS ’97, pages 5–10.

Goldberg, A. and Robson, D. (1983). Smalltalk-80: The Language. Addison-Wesley, Reading, MA.

Hu, Y. C., Yu, W., Cox, A., Wallach, D., and Zwaenepoel, W. (2003). Run-time support for distributed
sharing in safe languages. ACM Transactions on Computer Systems (TOCS), 21(1):1–35.

Jul, E., Levy, H., Hutchinson, N., and Black, A. (1988). Fine-grained mobility in the Emerald system. ACM
Transactions on Computer Systems, 6:109–133.

Kistler, T. and Franz, M. (1997). A tree-based alternative to java byte-codes. In Proceedings of the Interna-
tional Workshop on Security and Efficiency Aspects of Java ’97. Also published as Technical Report No.
96-58, Department of Information and Computer Science, University of California, Irvine, December
1996.

Kon, F., Costa, F., Blair, G., and Campbell, R. H. (2002). The case for reflective middleware. Communica-
tions of the ACM, 45(6):33–38.

Kon, F., Roman, M., Liu, P., Mao, J., T., Y., Magalhães, L., and Campbell, R. (2000). Monitoring, security,
and dynamic configuration with the DynamicTAO reflective ORB. In Proceedings of the IFIP/ACM
International Conference on Distributed Systems Platforms and Open Distributed Processing (Middle-
ware2000), pages 121–143.

Maes, P. (1987). Concepts and experiments in computational reflection. ACM SIGPLAN Notices,
22(12):147–155. OOPSLA’87.

Meyer, B. (1997). Object-Oriented Software Construction. Prentice Hall PTR, second edition.

Mullender, S. J., Rossum, G. v., Tanenbaum, A. S., Renesse, R. v., and Staveren, H. v. (1990). Amoeba: A
distributed operating system for the 1990s. IEEE Computer, 23:44–53.

Oliva, A. (1998). Guaraná: Uma arquitetura de software para reflexão computacional implementada em
java. Master’s thesis, Universidade Estadual de Campinas, Instituto de Ciência da Computação.

Parrington, G. D., Shrivastava, S. K., Wheater, S. M., and Little, M. C. (1995). The design and implemen-
tation of Arjuna. USENIX Computing Systems Journal, 8(3).

Rumbaugh, J., Jacobson, I., and Booch, G. (1997). Unified Modeling Language Reference Manual.
Addison-Wesley, Reading, MA.

Silberchatz, A. and Galvin, P. B. (1998). Operating System Concepts. Addison-Wesley, fifth edition.

Soley, R. M. and Kent, W. (1995). The OMG object model. In Kim, W., editor, Modern Database Systems,
chapter 2, pages 18–41. Addison-Wesley.

Stroustrup, B. (1986). The C++ Programming Language. Addison Wesley, Reading, Massachusetts.

Tanenbaum, Andrew S. (1995). Distributed Operating Systems. Prentice Hall.

Venkatasubramanian, N. (2002). Safe composability of middleware services. Communications of the ACM,
45(6):49–52.

�����
�����
���
���

	
	
	
		
	
	
		
	
	
	
�
�
��
�
�
�
�
�

ADT Tree

�
�
�
�
�
��
�
�
�
�
��
�
�
�
�
��
�
�
�
�
��
�
�
�
�
�

�
�
�
�
�
��
�
�
�
�
��
�
�
�
�
��
�
�
�
�
��
�
�
�
�
�

�
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
�

�
�
�
�
�
��
�
�
�
�
��
�
�
�
�
��
�
�
�
�
��
�
�
�
�
�

�
�
�
�
�
��
�
�
�
�
��
�
�
�
�
��
�
�
�
�
��
�
�
�
�
�

�
�
�
�
�
��
�
�
�
�
��
�
�
�
�
��
�
�
�
�
��
�
�
�
�
�

�
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
�

�����
�����
���
���

���
���
���
���
������

... ...

...

...

...

...

...

...

......

ADT Table

ADT Space

Method Table

Activity Space

Object Table

Object Space

Object

Table entry for local entity

Table entry for remote entity

Reference from table entry to local entity

Reference from entity to local table entry

Reference from table entry to remote table entry

Bi−directional reference between caller and callee activities

Caller activity

Callee activity

Asynchronous activity

Synchronous activity

Thread Control

Key:

VM Alpha VM Beta

...

Figure 2: Elements of the VIRTUOSI middleware

